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 We utilized the most applicable artificial intelligence systems for the challenge of 

cooling load (CL) in housing units. We fine-tuned them in 2 stages using an 

innovative evolutionary algorithm called Biogeography-Based Optimization (BBO). 

The abovementioned procedure is then applied to establish a connection between the 

system's input and output characteristics. The vital output of the system was the 

measure of CL. In contrast, the input attributes included surface area, relative 

compactness, roof area, wall area, glazing area distribution, overall height, and 

orientation. Two well-known statistical indices, the correlation coefficient (R2) and 

root mean squared error (RMSE) were used to assess the BBO approach's expected 

outcome for data sets. According to the findings of the BBO network's initial stage, 

the R2 and RMSE amounts for the training and testing data sets were 0.965281 and 

0.06773, respectively. Per the R2 and RMSE, the testing data set, and suggested 

BBO-MLP forecasting network models acquired amounts of 0.96007 and 0.06946, 

respectively. In the second stage, data are collected for ten distinct alpha values. 

These data suggest that an alpha of 1.1 provides excellent efficiency. In addition, the 

amounts of R2  and RMSE for the testing data set is (0.95113 and 0.07667) and 

(0.95574 and 0.07628) for the training data set, respectively.  
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1. Introduction

Today's world has witnessed the insatiable desire 

of emerging countries to achieve developed nation 

status. In attaining such, many nations overlook 

the need for renewable energy and lowering 

carbon emissions [1]. The government has turned 

to extensive building restorations and 

replacements to accommodate the population's 

necessities, such as housing. Research has shown 

that faulty housing structures and 

designs resulting from rushed planning account 

for 40 percent of carbon dioxide emissions [2].  

Inadequate time and space restrictions to complete 

the specified construction project resulted in an 

unsuitable building design, propelling India to 

fourth place in CO2 emissions. [GHG statistics 

from UNFCCC (United Nations Framework 

Convention on Climate Change)]. Therefore, it is 

now even more crucial to take action to limit this 

quantity. This research aims to address this issue 

by leveraging the buildings' energy performance 

(EBP) to reduce their energy usage. This topic has 

garnered much scholarly attention in recent years 

[3]. Efforts to enhance the EPB might alleviate 

this dire circumstance. 

Therefore, estimating cooling load based on 

fundamental characteristics of buildings, 

including wall area, surface area, and overall 

height, might assist in determining EPB [4]. Such 

techniques are prevalent even in HVAC projects 

[5]. Estimating cooling demand may also aid in 

reducing building power use and lowering CO2 

emissions [6, 7]. Research has also shown a clear 

association between energy usage and CO2 

emissions in Nigeria [8], demonstrating that the 

proposed assumption applies to other countries 

besides Nigeria. The researchers [9] evaluated the 

energy-saving potential and discovered that 

building occupancy and design are the two most 
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essential aspects strongly associated with EPB. 

Gul and Patidar's [10] research on energy usage 

verifies Chung and Rhee's [9] research study, 

which highlights that these guidelines are relevant 

not just in Korea but in many other parts of the 

globe, emphasizing the importance of building 

design in conserving energy. Thus, we can infer 

that forecasting cooling load will also enable us to 

define the structure of a refurbished building. 

Still, it would also allow us to lower the building's 

energy usage based on its occupancy pattern and 

create intelligent buildings [11-14]. Figure 1 

highlights the necessity of forecasting the cooling 

demand in buildings.  

 

 
 

(a) Nuclear (billion kWh) 
 

Figure 1. Importance of the forecast of heating and 

cooling loads in green buildings 

 

Scholars such as Yang et al. [15], Li and Li [16], 

Deb et al. [17], and Malkawi et al. [18] have 

become increasingly interested in estimating 

power usage in building structures. According to 

Lechtenbohmer and Schürer, housing areas have a 

substantial influence on natural resources [19]. 

Consequently, these structures prepare facilities 

for human needs, and their numerous 

contributions to the community cannot be ignored. 

Moreover, some scholars argue that construction 

has harmed the environment over the past few 

decades [16]. Metals, hydrocarbons, and electrical 

energy form the basis of the modern world's 

industrial process. These are interconnected; one 

is controllable if sufficient energy is available to 

generate the others. World energy usage in 2013 

was around 12,928.4 million tonnes [20]. In 2008, 

the world energy usage was around 474 Exajoules 

(EJ), most of which was provided by fossil fuels. 

In addition, global power usage increased by 70 

percent from 1990 to 2008 [20]. Building 

accounts for around 40 percent of global power 

consumption and plays a significant role in the 

energy industry, accounting for approximately 30 

percent of global CO2 emissions. 

Furthermore, Madadnia et al. [21] and Ahmad et 

al. [22] reported that the building's HVAC system 

meets its cooling demands. Sensors and 

automated machines are often used to calculate 

the cooling load. However, modern commercial 

building management systems (BMSs) may not 

always accurately estimate the cooling demand of 

a structure. Therefore, predicting cooling load and 

energy usage is challenging due to the numerous 

interdependent elements involved, such as the 

wide range of appliances and modifications to 

buildings to meet the growing population's needs 

[23, 24]. The need for an excellent alternative to 

load prediction remains, and more reliable 

prediction models must be developed to assist 

engineers and scientists in assessing sustainability 

challenges throughout the building construction 

stage. Tsanas and Xifara's writings include 

references to HVAC regulations [25]. Their 

technique used simulations that created twelve 

distinct building forms. The HVAC system serves 

as the stimulus for managing the indoor climate. 

Consequently, expecting a cooling load saves 

energy. Numerous hours have been devoted to 

anticipating the building cooling demands. 

Various machine learning approaches have been 

effectively used to predict the cooling of 

buildings. Deb et al. [17] have implemented an 

artificial neural network. 

In instances when even non-linear hypotheses fail 

to learn, ANN is commonly employed. Khayatian 

et al. [26] also predicted energy performance 

using the ANN. Yang et al. [15] have used LS-

SVM (Least Squares Support Vector Machine) 

and evaluated SVM against ANN, which employs 

a backpropagation technique to learn, by utilizing 

LS-SVM. Yang et al. [15] demonstrated that SVM 

outperforms ANN in terms of decreasing R-

squared and MAPE. Yu et al. have employed 

hierarchical multi-class SVDD and attained high 

precision in their study [27]. Roy et al. [28] also 

experimented with an extreme learning machine, a 

multivariate adaptive regression spline, and a 

hybrid approach combining ELM and MARS 

prediction models. Their outcomes were quite 

remarkable.   

This research proposes four models that forecast 

the cooling demand of residential structures as a 

response to the pressing need for energy 

conservation. The forecast of cooling demand is 

advantageous in several respects; for instance, it 

enables designers to make informed decisions 

about a building's sustainability. Forecasting 

approaches for loads may also be employed to 

create buildings with higher energy efficiency. 
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2. Established database 

Tsanas and Xifara [25] utilized the computer 

program Ecotect [29] to model the CL of twelve 

residential structures. Concerning 12 researched 

building structures (with 18 components in a 

771.75 m3 volume), four orientations, four 

glazing regions (0 percent, 10 percent, 25 percent, 

and 40 percent of the floor area), and five 

allocation situations, namely uniform (25 percent 

glazing on each side), South (55 percent on the 

South and 15 percent on each other side), North 

(55 percent on the North and 15 percent on each 

other side), and East (55 percent on the East and 

15 percent on each other side) were examined 

(Figures 2). The variations of the utilized database 

with the cooling load are shown in Figure 3. 

Similar research, such as [25, 30], provides 

further information regarding the dataset utilized. 

 

 
Figure 2: Graphical view of data preparation 

 

 

a) relative compactness (RC) 

 

b) surface area 

 
c) wall area 

 

d) roof area 

 
e) overall height 

 
f) orientation 

 
g) glazing area 
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h) glazing area distribution 

 

Figure 3: Schematic view of variations of the 

utilized database with the cooling load 

 

3. Methodology 

The general methodology used to achieve the goal 

of this research (i.e., the subsequent actions) is as 

follows:  

a) Data preparation involves arbitrarily dividing 

the input database into testing and training 

sets. Eighty percent of it is utilized to feed the 

approaches that determine the link between 

the CL and its relevant components, as is 

well-established.  

b) Using the MATLAB 2014 programming 

language, the optimal structure of the MLP 

neural network is determined, and it is 

provided quantitatively to the suggested BBO 

algorithm to identify the optimal solution to 

the issue. The output is generated through a 

trial-and-error procedure to determine the 

optimal variables of the model. The 

optimization procedure is then performed, and 

the output is acquired.  

c) Utilizing the other 20% of the data, the 

efficiency failure of the approaches is 

evaluated by employing two widely applied 

error criteria: root mean square error (RMSE) 

and mean absolute error (MAE). In addition, 

the determination coefficient measures the 

correlation of the findings (R2).  

 

3.1 Multilayer perceptron: 

MLP neural networks are composed of layered 

units [31]. Each layer consists of nodes, and each 

node is linked to every node in the layer below it. 

At least three layers comprise each MLP, 

including an output layer, one or more hidden 

layers, and an input layer. Inputs are distributed to 

successive levels via the input layer. Input nodes 

are equipped with linear activation functions and 

lack limits. In addition to weights, every output 

node and hidden node has limitations. The secret 

unit nodes' activation functions are non-linear, but 

the outputs' activation functions are linear. 

Consequently, each signal entering an anode in a 

successive layer multiplies the original input by a 

weight and applies a limit before passing through 

a linear or non-linear activation function (in 

hidden units). Figure 4 illustrates a typical three-

layer network of this kind. In this study, only 

three-layer MLPs will be investigated, as it has 

been demonstrated that such networks can 

simulate any continuous function [32-34]. All 

inputs and outputs are directly linked to the real 

three-layer MLP [31].  

The training data are a collection of NV 

training patterns of the form (xp, tp), where P is 

the pattern index. XP represents the Pth training 

pattern's N-dimensional input vector, and YP 

represents the trained network's M-dimensional 

output vector for the P
th
 training pattern. The limit 

on output and hidden units is addressed to 

facilitate identification and evaluation by 

assigning the value 1 to the completed vector 

component Xp (N+1), which is denoted by the 

symbol N+1. The installations of the input and 

output units are linear. netP (j), the input to the Jth 

hidden unit, is stated [31] as follows: 

𝑛𝑒𝑡𝑝(𝑗) = ∑ 𝑊ℎ𝑖(𝑗. 𝑘)𝑋𝑝(𝑘)       1 ≤ 𝑗 ≤ 𝑁ℎ
𝑁+1
𝑘=1   (1) 

With the output activation for the Pth training 

pattern, Op (j), is stated as follows: 

𝑂𝑝(𝑗) = 𝑓(𝑛𝑒𝑡𝑝(𝑗)) (2) 

 

The sigmoid function is often selected as the non-

linear activation: 

𝑓 (𝑛𝑒𝑡𝑝(𝑗)) =
1

1 + 𝑒−𝑛𝑒𝑡𝑝(𝑗)
 (3) 

 
In equations (7) and (8), the N input units are 

denoted by the index K, whereas Whi (J,K) 

represents the weight linking the Kth input to the 

Jth hidden unit.  

The MLP's performance is assessed using the 

MSE formula: 

 

𝐸 =
1

𝑁
∑ 𝐸𝑝 =

1

𝑁

𝑁𝑣
𝑝=1 ∑ ∑ [𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)]2𝑀

𝑖=1
𝑁𝑣
𝑝=1   (4) 

Where: 

𝐸𝑝 = ∑ [𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)]2
𝑀

𝑖=0
 (5) 
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Ep is the intended output for the Pth pattern, and 

tp relates to the error in the Pth pattern. This also 

enables the napping error for the ith output unit to 

be calculated as follows: 

𝐸𝑖 =
1

𝑁𝑣

∑ [𝑡𝑝(𝑖) − 𝑦𝑝(𝑖)]2
𝑀

𝑝=1
 (6) 

 

The ith output is represented as: 

𝑦𝑝(𝑖) = ∑ 𝑊𝑜𝑖(𝑖, 𝑘)𝑁+1
𝑘=1 𝑋𝑝(𝑘) + ∑ 𝑊𝑜𝑖(𝑖, 𝑗)𝑁ℎ

𝑗=1 𝑂𝑝(𝑗)  (7) 

 

In equation 13, 𝑊𝑜𝑖(𝑖, 𝑘)  indicates the weight 

from input units to output units and 𝑊𝑜𝑖(𝑖, 𝑗) The 

weight from hidden units to output units. 

 

Figure 4: A multilayer perceptron  

 

3.2. Biogeography-based optimization 

(BBO): 

Whenever an environment is densely inhabited, 

several species will likely depart to surrounding 

environments, whereas few species will 

immigrate due to the unavailability of additional 

resources for migratory species. Similarly, 

whenever an environment is poorly inhabited, it 

contains few species. It is, therefore, eligible to 

secure many immigrants, but few species are 

inclined to depart due to their low numbers. 

Whether immigrants can thrive following 

migration is a separate concern; however, the new 

species' immigration may increase the biological 

richness of the environment and make it more 

suitable for existing species. In the 1990s, [35] 

this concept of the ecosystem as an optimizing 

system was first proposed. Biogeographers argue 

that a biogeography concept centered on 

maximizing the environment's state for biological 

activity is preferable to one based on homeostasis 

[36]. In reality, several instances of optimal 

solutions to biogeographical phenomena, such as 

the Krakatoa island phenomenon [37] and the 

Amazon rainforest [36], corroborate this point of 

view.  

With an alternative perspective, biogeography is 

sometimes seen as a procedure that maintains 

ecological balance. Throughout time, the 

opposing pressures of emigration and immigration 

culminate in an equilibrium of species' level 

diversity in a diverse habitat. Specifically, 

equilibrium is the point where the emigration and 

immigration curves intersect. In the 1960s, the 

equilibrium perspective in biogeography initially 

gained popularity as researchers challenged the 

equilibrium approach while increasingly adopting 

the optimality perspective.  

Although biogeographical phenomena have been 

contested as an optimization procedure, suitable 

responses have been provided to address these 

issues. It must be emphasized that optimization 

and equilibrium are two separate viewpoints on 

the same biogeographic phenomena; yet, this 

discussion opens up several new avenues for 

study in BBO.  

As its name suggests, BBO is a unique 

optimization technique built upon biogeography. 

The following section provides an in-depth 

description of the BBO methodology. Similar to 

how biology's mathematics prompted the creation 

of other biology-based optimization techniques, 

we can incorporate biogeographic elements into 

BBO to enhance its optimization efficiency. 

Among these are the impact of geographical 

location on migration rates, non-linear migration 

curves to best-fit nature (as will be presented in 

the paper), species swarms, prey/ predator 

interactions, the impact of differing species 

mobilities on directional momentum throughout 

the migration, rates ofn migration, and the impact 

of ecosystems area and isolation on migration 

rates. 

 

Biogeography-based optimization: BBO 

This section outlines the biogeography-based 

optimization method in broad terms. Assume we 

have a problem requiring improvement and a 

variety of potential solutions. A comparable 

environment with a high habitat suitability index 

(HSI) is an effective solution. According to 

biogeography, this refers to a suitable 

geographical region for biological organisms. HSI 

is an indicator of the quality of the solution 

provided by the environment in an optimization 

problem, also known as fitness. A wrong solution 

is comparable to a low HSI environment. Thus, 
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the variety of species a solution describes depends 

on its HSI. Solutions with a large HSI are more 

willing to exchange their characteristics with 

other solutions. 

In contrast, solutions with a lower HSI are more 

inclined to accept features shared by other 

solutions. This innovative method for solving 

broad optimization issues is known as BBO. 

Like other evolutionary approaches, BBO consists 

of two key steps: information exchange (which is 

performed in BBO through migration) and 

mutation. Migration is a probabilistic operation 

that enhances a habitat (Hi).  We leverage the 

migration rates of every environment based on the 

probability exchange characteristics across 

habitats. For each habitat (Hi), we utilize its 

immigration rate. 𝜆𝑖 to determine probabilistically 

whether one should immigrate or not. If 

immigration is chosen, the emigrating habitat Hj 

is chosen probabilistically depending on the 

emigration rate µj.  

𝐻𝑖(𝑆𝐼𝑉) ← 𝐻𝑗(𝑆𝐼𝑉) (8) 

An SIV is a suitability index parameter that 

indicates the livability of an island in 

biogeography. An SIV is a solution characteristic 

in BBO, analogous to a gene in GAs. The 

mutation is a probabilistic agent that arbitrarily 

adjusts the SIV of the habitat according to the 

prior probability of the environment's species 

count. The objective of mutation is typically to 

promote genetic diversity within a population. 

Mutation offers solutions with a poor HSI the 

opportunity to improve their performance. The 

mutation may make solutions with a high HSI 

even better than they currently are.  

Two years later, [38] proposes modifying the 

migration operator for the case Hi. Given that in 

normal BBO, if Hi(SIV) is chosen to be 

immigrated by Hj(SIV), the operator 

Hi(SIV)=Hj(SIV) is applied. This could reduce 

the search space, resulting in a locally optimal 

solution. Ma suggests a unique operator that 

combines the characteristics of immigrants and 

immigrant operators. This method enables BBO to 

preserve population variety and prevent local 

optima. In this strategy, 𝛼 ∈ [0,1] is used to adjust 

the weights of the current candidate and 

immigration solutions. In [38], the authors 

investigate the setting of 𝛼  experiment. The test 

results conclude that a proper value of 𝛼 , say 

𝛼 = 0.5, performs better than a large or a small 

value of 𝛼 , say 𝛼 = 0 and 0.8, respectively. In 

studies [39, 40] and [38], the migration operator is 

designed to involve only one other solution, 

meaning that each candidate learns from a single 

peer during the migration process. To enhance 

this learning mechanism, Xiong [41] introduced a 

polyphyletic migration operator in 2004, which 

allows a candidate to learn from two different 

solutions simultaneously during each migration 

step. The corresponding pseudocode is presented 

in Algorithm 8, where φ ∈ [0, 1] and i, j, l, s ∈ [1, 

N]. Here, N represents the population size, and D 

denotes the dimensionality of the problem. 

Following the migration step, Xiong [41] also 

incorporated an Orthogonal Learning Strategy 

(OLS), enabling the BBO algorithm to explore 

more promising solutions in the vicinity of current 

candidates. 

 

Comparing other evolutionary approaches to 

BBO 

BBO is a swarm-based, universal optimization 

technique that shares characteristics with other 

EAs, such as particle swarm optimization (PSO), 

evolutionary strategy (ES), differential evolution 

(DE), and ant colony optimization (ACO). For 

instance, they all use the same information-

sharing operators. This makes BBO suitable for 

several issues when GAs and PSOs are employed. 

Nevertheless, BBO has characteristics that 

distinguish it from other EAs. Firstly, we observe 

that ES and GAs create offspring through 

crossovers; their solutions are lost at the end of 

each iteration, whereas the solutions of BBO are 

not lost but rather changed via migration. 

Secondly, we observe that ACO generates a new 

set of solutions for each iteration, whereas BBO 

maintains the same solution set across iterations. 

In contrast to PSO and DE, BBO solutions change 

immediately via migration, whereas PSO and DE 

change depending on the distinctions between 

these solutions. The benefits and drawbacks of 

BBO relative to other EAs require further 

research. 

 

4. Results and discussion 

This work evaluates the application of a meta-

heuristic method, called BBO, in the advanced 

calculation of cooling demand in residential 

buildings. In this study, the process contributes to 

the solution by improving the CL estimation 

variables of an ANN by monitoring ambient 

factors. This section discusses the estimation 

outcomes of the MLP neural network instrument 

and the BBO-MLP ensembles. The suggested 
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BBO model's output has been displayed in tables 

and figures. For research, we have embraced the 

R and MATLAB programming languages.  

Conventional assessments of error measurements, 

like R2  and RMSE were used to evaluate the 

model's proposed performance. The cooling load 

efficiency of the proposed method is illustrated in 

Tables 1-3 and Figures 5-10. 

 
Table 1. Network result variations based on the number in each hidden layer 

The number 

of neurons in 

each hidden 

layer 

Network results Scoring 
Total score RANK 

RMSEtotal RMSEtrain RMSEtest MSEtotal RMSEtrain RMSEtest 

1 1.155 1.206 1.170 5 5 5 15 6 

2 0.702 0.694 0.700 8 8 8 24 3 

3 0.686 0.673 0.682 9 9 9 27 2 

4 0.732 0.745 0.736 7 7 7 21 4 

5 1.673 1.688 1.677 4 4 4 12 7 

6 2.413 2.371 2.400 2 2 2 6 9 

7 0.599 0.609 0.602 10 10 10 30 1 

8 0.800 0.799 0.800 6 6 6 18 5 

9 1.829 1.793 1.818 3 3 3 9 8 

10 3.050 2.917 3.011 1 1 1 3 10 

4.1. Accuracy Indicators 

To assess the forecasted CL, two statistical 

indices, namely, the coefficient of determination 

(R2), and root mean square error (RMSE), were 

utilized to expand a color intensity ranking. It is 

worth noting that these evaluation criteria have 

been widely utilized in previous studies [42-44]. 

The formulations for RMSE and R² are presented 

in Equations (1) and (2), respectively. 

2

1

1
RMSE [( )]

observed predicted

U

i i

i

S S
U 

   (16) 

 

2

2 1

1

2

( )

( )

-

1-

-

predicted observed

observed

U

i i

i

U

observedi

i

S S

R

S S










 
(17) 

 

In the above equations, Si observed and Si anticipate 

represent CL's real and expected values for the 

energy-efficient structure. U stands for the 

number and 𝑠𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑  The mean of CL's real 

values. Machine learning models were 

constructed using an enhanced dataset in the 

Weka software environment. The outcomes of this 

procedure are provided in the following section.  

 

 

4.2. Incorporated Optimizers and FIS  

The BBO was presented with the equation of the 

calculated MLP as the primary challenge. Then, 

the cost function was calculated as the RMSE 

between the expected and actual CLs of the 

training specimens. The cost function is 

determined after each cycle to assess the 

simulation's validity. The BBO-MLP approach 

was then subjected to a sensitivity analysis 

dependent on the overall population. It is among 

the most significant variables of hybrid 

algorithms, as is pretty apparent. The networks are 

evaluated with ten swarm sizes ranging from 50 to 

500 (50, 100, 150, 200, 250, 300, 350, 400, 450, 

and 500). Every network was constructed over 

1000 cycles to reduce the error. As mentioned 

above, the approach yields ten convergence 

curves, as represented in Figure 5 for the BBO-

MLP ensemble.  
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Figure 5: Finding the best-fit structure for 

BBOMLP 50-500 

 

The best convergence curves (the lowest RMSE at 

the end of the procedure) are achieved for the 

swarm sizes of 400 for the BBO-MLP ensemble. 

Figure 6 shows the obtained RMSE values 

(3.509617617, 3.315078293, and 3.187975741) 

along with the alpha values (0.5, 0.6, 0.7, 0.8, 0.9, 

1.0, 1.1, 1.2, 1.3, and 1.4) for a population size of 

400. The lowest MSE shows the most accurate 

result and the best alpha value. According to this 

chart, the lowest MSE is obtained for α = 1.1. As 

shown in Figure 6, the highest MSE is obtained 

for alpha=0.8, indicating that this value of alpha 

yields less accurate results in predicting CL. 

 

 
 

Figure 6: Best fit proposed 400 structures with 

various BBO alpha between 0.5 and 1.4 
 

This section evaluates the precision of the created 

approaches by contrasting the expected and real 

CL amounts. Two error criteria, MAE and RMSE, 

were used to determine the performance error for 

both testing and training sets. The results' fitness 

in the testing and training stages shows the 

learning capacity and generalization ability, 

respectively. Concerning the testing stage, Figures 

7 and 8 provide a graphical representation of the 

errors (the difference between the calculated and 

estimated CLs) and the correlation between the 

measured and expected CLs for each approach. 

There's no variance in the overall training 

performance. In other words, the greater the 

generalization power, the greater the 

comprehension in the training period. By taking 

the R2and the RMSE results from Figures 7 and 8, 

as shown in Table 2, can be obtained, which 

represent the combination of all regressions and 

rank the optimal size of the population. In 

addition, per Table 2, the R2 amounts of 0.96007 

and 0.9652 for testing and training, respectively, 

indicated that the population size of 400 was the 

most accurate. 

 

(a) BBOMLP train Np=50 

 

(b) BBOMLP train Np=100 
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(c) BBOMLP train Np=150 

 

(d) BBOMLP train Np=200 

 

(e) BBOMLP train Np=250 

 

(f) BBOMLP train Np=300 

 

(g) BBOMLP train Np=350 

 

(h) BBOMLP train Np=400 
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(i) BBOMLP train Np=450 

 

(j) BBOMLP train Np=500 

Figure 7: The precision of training set performance 

of BBOMLP in the first optimization phase after 

changing the population size between 50 and 500 

 

 

 

(a) BBOMLP train Np=50 

 

(b) BBOMLP train Np=100 

 

(c) BBOMLP train Np=150 

 

(d) BBOMLP train Np=200 
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(e) BBOMLP train Np=250 

 

(f) BBOMLP train Np=300 

 

(g) BBOMLP train Np=350 

 

(h) BBOMLP train Np=400 

 

(i) BBOMLP train Np=450 

 

(j) BBOMLP train Np=500 

Figure 8: The precision of testing set performance 

of BBOMLP in the first optimization phase, after 

changing the population size between 50 and 500 
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Table 2. The network outcomes for the BBOMLP having different swarm sizes 

Swam 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

50 0.07573 0.95639 0.07564 0.95246 1 1 1 1 4 10 

100 0.07186 0.96083 0.07262 0.95628 5 5 7 7 24 5 

150 0.0689 0.96405 0.07011 0.95931 9 9 9 9 36 2 

200 0.07179 0.9609 0.07368 0.95495 6 6 4 4 20 6 

250 0.072 0.96067 0.07322 0.95553 4 4 5 5 18 7 

300 0.0731 0.95943 0.07444 0.954 3 3 3 3 12 8 

350 0.07082 0.96197 0.07214 0.95686 8 8 8 8 32 3 

400 0.06773 0.96528 0.06946 0.96007 10 10 10 10 40 1 

450 0.07367 0.95878 0.07445 0.95399 2 2 2 2 8 9 

500 0.07116 0.9616 0.07279 0.95606 7 7 6 6 26 4 

 

According to R2  The value (i.e., the smallest 

RMSE at the end of the procedure) is acquired, 

indicating that a population size of 400 yields the 

highest accuracy outcome. Figures 9 and 10 

illustrate the visual perspective of R2  for testing 

and training stages for population size 400 and the 

alpha (0.5, 0.6, 0.7, 0.8, 0.9, 0.1, 1.1, 1.2, 1.3, and 

1.4).  As previously highlighted, Table 3 can be 

derived utilizing RMSE and R2  amounts of 

Figures 9 and 10, since that is the sum of all 

regressions, and according to its ranking, the 

optimum alpha value is given. According to 

Figures 9 and 10, and Table 3, the maximum R2 is 

found for alpha=1.2 (0.95574 and 0.95113 (for 

training and testing, respectively). 

 

(a) BBOMLP train α=0.5 

 

(b) BBOMLP train α=0.6 

 

(c) BBOMLP train α=0.7 
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(d) BBOMLP train α=0.8 

 

(e) BBOMLP train α=0.9 

 

(f) BBOMLP train α=1.0 

 

(g) BBOMLP train α=1.1 

 

(h) BBOMLP train α=1.2 

 

(i) BBOMLP train α=1.3 
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(j) BBOMLP train α=1.4 

Figure 9: The results of training dataset accuracy 

for the proposed structure, having different BBO 

alpha parameters, vary from 0.5 to 1.4 

 

 

(a) BBOMLP test α=0.5 

 

(b) BBOMLP test α=0.6 

 

(c) BBOMLP test α=0.7 

 

(d) BBOMLP test α=0.8 

 

(e) BBOMLP test α=0.9 
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(f) BBOMLP test α=1.0 

 

(g) BBOMLP test α=1.1 

 

(h) BBOMLP test α=1.2 

 

(i) BBOMLP test α=1.3 

 

(j) BBOMLP test α=1.4 

Figure 10: Testing accuracy for the proposed 

structure having different BBO alpha parameters 

varied from 0.5 to 1.4 
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Table 3. The network outcomes for the BBOMLP have a different alpha value 

Swam 

size 

Training dataset Testing dataset Scoring 
Total Score Rank 

RMSE R2 RMSE R2 Training Testing 

0.5 0.0756 0.95655 0.07501 0.95328 3 3 3 3 12 3 

0.6 0.07325 0.95927 0.07308 0.9557 4 4 8 8 24 6 

0.7 0.07307 0.95946 0.07444 0.954 6 6 4 4 20 5 

0.8 0.07263 0.95997 0.07444 0.954 8 8 4 4 24 6 

0.9 0.07174 0.96095 0.07335 0.95536 9 9 7 7 32 8 

1 0.07268 0.95991 0.07189 0.95717 7 7 10 10 34 9 

1.1 0.07093 0.96185 0.07273 0.95614 10 10 9 9 38 10 

1.2 0.07628 0.95574 0.07667 0.95113 2 2 1 1 6 1 

1.3 0.07746 0.95433 0.07638 0.9515 1 1 2 2 6 1 

1.4 0.07322 0.9593 0.07444 0.954 5 5 4 4 18 4 

5. Discussion 

It is evident from the preceding analysis and 

interpretation that numerous computations are 

required to assess the building power system, 

ranging from subsystem to building scales, and 

even regional and national scales. Each model has 

its own merits in specific usage scenarios. The 

engineering model has significant variances. The 

development of this model may involve several 

factors. It may be a very complex and exhaustive 

model, useful for precise computations. 

On the contrary, by implementing proper 

simplification techniques, the model could be 

lightweight and simple to create while retaining 

its accuracy. Due to its high complexity and the 

lack of input information, implementing this 

comprehensive engineering model in reality is 

challenging, which is a well-acknowledged 

disadvantage. The statistical model is reasonably 

straightforward, but its shortcomings are readily 

apparent: inaccuracy and rigidity. ANNs are adept 

at addressing non-linear issues, making them very 

useful for estimating building energy 

consumption. It can produce accurate predictions 

if model selection and parameter setup are 

correctly completed. This approach has the 

drawbacks of requiring enough previous 

performance data and being quite sophisticated. 

The estimation of building energy usage has 

garnered significant interest from the academic 

community, yet many open, unresolved research 

topics remain. The following topics may be the 

subject of future study.  

• Introduce novel prediction models that are more 

effective, stable, accurate, and efficient.  

• Improve aspects of energy usage at the system 

level, evaluate possible models, and select the 

optimal model for each component.  

• Apply energy forecasting to the Building Energy 

Management System (BEMS) for mutual 

advantage.  

• Examine artificial intelligence models in various 

applications and improve prediction parameters. 

• Evaluate each variable's impact on empirical 

models and balance the model performance and 

practicality in reality.  

• Provide databases and gather accurate and 

adequate historical usage information from a 

multitude of situations for use in future studies. 

This study demonstrated the effective use of 

an artificial neural network (ANN) model to 

address a critical energy-related challenge. Given 

the promising results, the proposed approach has 

the potential to be developed into a user-friendly 

platform, such as a graphical user interface (GUI), 

for early-stage prediction of cooling loads based 

on specific input parameters. Such a tool could be 

particularly valuable for engineers and architects 

aiming to optimize residential building designs, 

especially in terms of geometry and energy 

performance. 

While several previous studies have 

successfully applied machine learning techniques 

to predict thermal loads in various building types, 

such as office, commercial, and industrial 

structures [45], further refinements could enhance 

the present method. First, comparing results based 
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on normalized data would help determine which 

data formats are most suitable for these 

simulations. Second, selecting an optimal number 

of input variables can simplify the model, 

reducing complexity and the number of 

parameters that require calibration. Additionally, 

linking HL with CL transforms the task into a 

multi-target prediction problem, which may 

increase complexity and should be weighed 

against its benefits. 

Future research could also explore applying 

the model to a wider range of building types 

within a single study to improve its 

generalizability. Lastly, comparative studies are 

recommended to identify the most effective 

algorithms for integration with ANN or other 

intelligent systems. 

The forecasting model proposed in this paper 

differed from previous studies in the analysis 

phases. Previous studies usually included just one 

phase of analysis. In this method, the analysis is 

conducted in the first phase, as in the previous 

work, and the optimal population size is selected. 

This swarm size has the lowest RMSE value and 

the most R2  value and has the most accurate 

prediction. However, this section is the main 

difference between this work and the previous 

ones. In the second phase, the best swarm size of 

the first phase is examined. In this way, several 

different values for the alpha parameter (discussed 

in the previous section) have been considered, and 

the value that has the lowest RMS and the highest 

R2 has been extracted. 
 

5. Conclusions 

Given the growing significance of conserving 

energy in modern human civilization, the primary 

objective of this study was to develop a unique 

hybrid approach for modeling the residential 

buildings' CL. The suggested approach imitates 

the herding behavior of BBO to enhance the 

neural network's efficiency. To do this, the BBO 

was fabricated with an MLP to produce the BBO-

MLP ensemble. The CL was then predicted by 

considering eight relevant parameters. According 

to the estimated errors and the correlation of the 

findings, the BBO is effective at correcting the 

MLP's neural biases and weights. Based on the 

outcomes of the two presented statistical indices, 

namely. R2 and RMSE, two statistical indices, 

were applied. The findings demonstrated that the 

proposed model (BBO-MLP) yields satisfactory 

estimation results in predicting CL in residential 

buildings. The values of R2  in the BBO-MLP 

model, which was obtained for a population size 

of 400, yielding 0.96007 and 0.96528 for the 

testing and training data sets, respectively. 

Additionally, in the case of RMSE, values of 

0.06773 and 0.06943 were obtained from the 

training and testing datasets, respectively. Finally, 

by changing the alpha parameter's value for a 

population size of 400, the best accuracy results 

were obtained for alpha = 1.2. These results show 

the value of (0.95547 and 0.95113) for R2  and 

(0.07628 and 0.07667) for the RMSE of the 

training and testing datasets, respectively. 
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